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NAG C Library Function Document

nag friedman_test (g08aec)

1 Purpose

nag_friedman_test (g08aec) performs the Friedman two-way analysis of variance by ranks on k related
samples of size n.

2 Specification

#include <nag.h>
#include <nagg08.h>

void nag_friedman_test (Integer k, Integer n, const double x[], Integer tdx,
double *fr, double *p, NagError *fail)

3 Description

The Friedman test investigates the score differences between k£ matched samples of size n, the scores in the
1th sample being denoted by:

Ti1,Li2y -« Tin-

(Thus the sample scores may be regarded as a two-way table with k£ rows and n columns.) The hypothesis
under test, Hy, often called the null hypothesis, is that the samples come from the same population, and
this is to be tested against the alternative hypothesis H; that they come from different populations.

The test is based on the observed distribution of score rankings between the matched observations in
different samples.

The test proceeds as follows:

(a) The scores in each column are ranked, r;; denoting the rank within column j of the observation in row
1. Average ranks are assigned to tied scores.
(b) The ranks are summed over each row to give rank sums t; = Z;lzl rij, for i =1,2,... k.

(c) The Friedman test statistic F'R is computed, where

12 k 1 5

nag_friedman_test returns the value of F'R, and also an approximation, p, to the significance of this value.
(FR approximately follows a x7_, distribution, so large values of F'R imply rejection of Hy). Hy is
rejected by a test of chosen size « if p < «. The approximation p is acceptable unless K = 4 and n < 5, or
k=3and n < 10, or k = 2 and n < 20; for £k = 3 or 4, tables should be consulted (e.g., n of Siegel
(1956)); for k = 2 the Sign test (see nag_sign test (g08aac)) or Wilcoxon test (see nag_wilcoxon_test
(g08agc)) is in any case more appropriate.

4 Parameters
I: k — Integer Input
On entry: the number of samples, k.

Constraint: k > 1.
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2: n — Integer Input
On entry: the size of each sample, n.

Constraint: n > 1.

3: x[k][tdx] — const double Input
On entry: X[i —1][j — 1] must be set to the value, z;;, of observation j in sample i, for
i=1,2,.. .k j=1,2,...,n

4: tdx — Integer Input

On entry: the first dimension of the array x as declared in the function from which
nag_friedman_test is called.

Constraint: tdx > n.

5: fr — double * Output

On exit: the value of the Friedman test statistic, F'R.

6: p — double * Output

On exit: the approximate significance, p, of the Friedman test statistic.

7: fail — NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

5  Error Indicators and Warnings

NE_INT _ARG_LT

On entry, n must not be less than 1: n = <value>.
NE_INT ARG _LE

On entry, k must not be less than or equal to 1: k = <value>.
NE_2 INT _ARG_LT

On entry, tdx = <value> while n = <value>.
These parameters must satisfy tdx > n.

NE_ALLOC_FAIL

Memory allocation failed.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

6  Further Comments
The time taken by the routine is approximately proportional to the product nk.

If k£ = 2, the Sign test (see nag_sign_test (g08aac)) or Wilcoxon test (see nag_wilcoxon_test (g08agc)) is
more appropriate.

6.1 Accuracy

For estimates of the accuracy of the significance p, see nag prob chi sq (g0lecc). The x> approximation
is acceptable unless k =4 and n < 5, or k =3 and n < 10, or k = 2 and n < 20.
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6.2 References

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw-Hill

7 See Also

nag_prob_chi sq (g0lecc)
nag_sign_test (g08aac)
nag_wilcoxon_test (g08agc)

8 Example

This example is taken from page 169 of Siegel (1956). The data relate to training scores of three matched
samples of 18 rats, trained under three different patterns of reinforcement.

8.1 Program Text

/* nag_friedman_test (g08aec) Example Program.
*

* Copyright 2000 Numerical Algorithms Group.
*

* Mark 6, 2000.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg08.h>

int main (void)

{
double fr, sig, *x=0;
Integer i, ix, j, k, n;
Integer exit_status=0;
NagError fail;

#define X(I,J) x[((I)-1)*n +(J)-1]

INIT_FAIL(fail);
Vprintf ("g08aec Example Program Results\n");

/* Skip heading in data file */
Vscanf ("s*[*\nl") ;

n = 18;
k = 3;
ix = k;
if (! (x = NAG_ALLOC(ix*n, double)))
{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
¥
for (i = 1; i <= ix; ++1i)

for (3 = 1; j <= n; ++3j)
Vscanf ("$1f", &X(i,3));

Vprintf ("\nFriedman test\n");
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Vprintf ("\nData values\n");
Vprintf ("\n Group Group Group\n");
Vprintf (" 1 2 3\n");
for (j = 1; j <= 18; ++3)
{
for (i = 1; i <= 3; ++1i)
Vprintf ("s7.1£f", X(i,3));
Vprintf ("\n") ;
}
gO8aec(k, n, x, n, &fr, &sig, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from gO8aec.\n%s\n",
exit_status = 1;
goto END;
}
Vprintf ("\n") ;
Vprintf ("%$s%6.3f\n", "Test statistic
Vprintf ("%$s%61d\n", "Degrees of freedom
Vprintf ("%$s%6.3f\n", "Significance
END:

if (x) NAG_FREE (x);
return exit_status;

8.2 Program Data

g08aec Example Program Data
12 1 1 3 2 3 1 3 3 2 2 3
3 3 3 21 3 2 3 1 1 3 3 2
21 2 3 2 1 1 2 2 2 1 1 1

8.3 Program Results

gO8aec Example Program Results
Friedman test
Data values

Group Group Group
1 2 3
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fail.message) ;

", fr);
||, k_l),‘
", sig);
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2.0 3.0 1.0
Test statistic 8.583
Degrees of freedom 2
Significance 0.014
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