208 — Nonparametric Statistics g08aec

NAG C Library Function Document

nag friedman_test (g08aec)

1 Purpose

nag_friedman_test (g08aec) performs the Friedman two-way analysis of variance by ranks on k related
samples of size n.

2 Specification

#include <nag.h>
#include <nagg08.h>

void nag_friedman_test (Integer k, Integer n, const double x[], Integer tdx,
double *fr, double *p, NagError *fail)

3 Description

The Friedman test investigates the score differences between k£ matched samples of size n, the scores in the
1th sample being denoted by:

Ti1,Li2y -« Tin-

(Thus the sample scores may be regarded as a two-way table with k£ rows and n columns.) The hypothesis
under test, Hy, often called the null hypothesis, is that the samples come from the same population, and
this is to be tested against the alternative hypothesis H; that they come from different populations.

The test is based on the observed distribution of score rankings between the matched observations in
different samples.

The test proceeds as follows:

(a) The scores in each column are ranked, r;; denoting the rank within column j of the observation in row
1. Average ranks are assigned to tied scores.
(b) The ranks are summed over each row to give rank sums t; = Z;lzl rij, for i =1,2,... k.

(c) The Friedman test statistic F'R is computed, where

12 k 1 5

nag_friedman_test returns the value of F'R, and also an approximation, p, to the significance of this value.
(FR approximately follows a x7_, distribution, so large values of F'R imply rejection of Hy). Hy is
rejected by a test of chosen size « if p < «. The approximation p is acceptable unless K = 4 and n < 5, or
k=3and n < 10, or k = 2 and n < 20; for £k = 3 or 4, tables should be consulted (e.g., n of Siegel
(1956)); for k = 2 the Sign test (see nag_sign test (g08aac)) or Wilcoxon test (see nag_wilcoxon_test
(g08agc)) is in any case more appropriate.

4 Parameters
I: k — Integer Input
On entry: the number of samples, k.

Constraint: k > 1.

[NP3491/6] g08aec.1

g08aec NAG C Library Manual

2: n — Integer Input
On entry: the size of each sample, n.

Constraint: n > 1.

3: x[k][tdx] — const double Input
On entry: X[i —1][j — 1] must be set to the value, z;;, of observation j in sample i, for
i=1,2,.. .k j=1,2,...,n

4: tdx — Integer Input

On entry: the first dimension of the array x as declared in the function from which
nag_friedman_test is called.

Constraint: tdx > n.

5: fr — double * Output

On exit: the value of the Friedman test statistic, F'R.

6: p — double * Output

On exit: the approximate significance, p, of the Friedman test statistic.

7: fail — NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

NE_INT _ARG_LT

On entry, n must not be less than 1: n = <value>.
NE_INT ARG _LE

On entry, k must not be less than or equal to 1: k = <value>.
NE_2 INT _ARG_LT

On entry, tdx = <value> while n = <value>.
These parameters must satisfy tdx > n.

NE_ALLOC_FAIL

Memory allocation failed.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

6 Further Comments
The time taken by the routine is approximately proportional to the product nk.

If k£ = 2, the Sign test (see nag_sign_test (g08aac)) or Wilcoxon test (see nag_wilcoxon_test (g08agc)) is
more appropriate.

6.1 Accuracy

For estimates of the accuracy of the significance p, see nag prob chi sq (g0lecc). The x> approximation
is acceptable unless k =4 and n < 5, or k =3 and n < 10, or k = 2 and n < 20.

208aec.2 [NP3491/6]

g08 — Nonparametric Statistics g08aec

6.2 References

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw-Hill

7 See Also

nag_prob_chi sq (g0lecc)
nag_sign_test (g08aac)
nag_wilcoxon_test (g08agc)

8 Example

This example is taken from page 169 of Siegel (1956). The data relate to training scores of three matched
samples of 18 rats, trained under three different patterns of reinforcement.

8.1 Program Text

/* nag_friedman_test (g08aec) Example Program.
*

* Copyright 2000 Numerical Algorithms Group.
*

* Mark 6, 2000.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg08.h>

int main (void)

{
double fr, sig, *x=0;
Integer i, ix, j, k, n;
Integer exit_status=0;
NagError fail;

#define X(I,J) x[((I)-1)*n +(J)-1]

INIT_FAIL(fail);
Vprintf ("g08aec Example Program Results\n");

/* Skip heading in data file */
Vscanf ("s*[*\nl") ;

n = 18;
k = 3;
ix = k;
if (! (x = NAG_ALLOC(ix*n, double)))
{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
¥
for (i = 1; i <= ix; ++1i)

for (3 = 1; j <= n; ++3j)
Vscanf ("$1f", &X(i,3));

Vprintf ("\nFriedman test\n");

[NP3491/6] 208aec.3

g08aec
Vprintf ("\nData values\n");
Vprintf ("\n Group Group Group\n");
Vprintf (" 1 2 3\n");
for (j = 1; j <= 18; ++3)
{
for (i = 1; i <= 3; ++1i)
Vprintf ("s7.1£f", X(i,3));
Vprintf ("\n") ;
}
gO8aec(k, n, x, n, &fr, &sig, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from gO8aec.\n%s\n",
exit_status = 1;
goto END;
}
Vprintf ("\n") ;
Vprintf ("%$s%6.3f\n", "Test statistic
Vprintf ("%$s%61d\n", "Degrees of freedom
Vprintf ("%$s%6.3f\n", "Significance
END:

if (x) NAG_FREE (x);
return exit_status;

8.2 Program Data

g08aec Example Program Data
12 1 1 3 2 3 1 3 3 2 2 3
3 3 3 21 3 2 3 1 1 3 3 2
21 2 3 2 1 1 2 2 2 1 1 1

8.3 Program Results

gO8aec Example Program Results
Friedman test
Data values

Group Group Group
1 2 3

WWNNNWNNNWWRE WD WPE R~ N R
OO UOO0OO0OO0OO0OO0OO0OO0OO0OO0OOOoO OO
NN NWNWWRERWLDWEREDWWW
OO UOOO0OO0OO0OO0OO0OO0OO0OOOOoOOoOo
PR PR RPRROMNONNNRRNDWND RN
OO0 00000000000 OO OO

g08aec.4

NAG C Library Manual

fail.message) ;

", fr);
||, k_l),‘
", sig);

[NP3491/6]

g08 — Nonparametric Statistics

g08aec
2.0 3.0 1.0
Test statistic 8.583
Degrees of freedom 2
Significance 0.014
[NP3491/6]

g08aec.5 (last)

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

