# Simulation of a Wideband Radar Echo of a Target on a Dynamic Sea Surface

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Scattering Echo Simulation

^{3}. The five cubes are placed on the XOY plane, as shown in Figure 2.

#### 2.2. Rectangular Wave Beam-Based GO/PO Method

#### 2.3. Scene of Ship and Sea

^{2}, which is large enough to put a general ship on it. As shown in Figure 6, the ship model is 120 m long, 20 m wide, and 25 m high. Generally, the scattering properties of a ship change obviously with the azimuth. Here, two typical orientations are considered. One orientation is that the ship’s bow is perpendicular to the moving direction of the airborne radar (see Figure 6a). The other is that the ship’s bow is parallel to the moving direction of the airborne radar (see Figure 6b).

## 3. Results

#### 3.1. Results of the SAR Simulation

#### 3.2. Efficiency of the Rectangular Wave Beam-Based GO/PO Method

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Dong, G.; Kuang, G. Classification on the Monogenic Scale Space: Application to Target Recognition in SAR Image. IEEE Trans. Image Process.
**2015**, 24, 2527–2539. [Google Scholar] [CrossRef] [PubMed] - Zhao, P.; Liu, K.; Zou, H.; Zhen, X. Multi-Stream Convolutional Neural Network for SAR Automatic Target Recognition. Remote Sens.
**2018**, 10, 1473. [Google Scholar] [CrossRef] [Green Version] - Kajbaf, H.; Case, J.T.; Yang, Z.; Zheng, Y.R. Compressed Sensing for SAR-based Wideband Three-dimensional Microwave Imaging System Using Non-uniform Fast Fourier Transform. IET Radar Sonar Navig.
**2013**, 7, 658–670. [Google Scholar] [CrossRef] - Peng, X.; Wang, Y.; Hong, W.; Tan, W.; Wu, Y. Autonomous Navigation Airborne Forward-Looking SAR High Precision Imaging with Combination of Pseudo-Polar Formatting and Overlapped Sub-Aperture Algorithm. Remote Sens.
**2013**, 5, 6063–6078. [Google Scholar] [CrossRef] [Green Version] - Gao, G.; Liu, L.; Zhao, L.; Shi, G.; Kuang, G. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens.
**2009**, 47, 1685–1697. [Google Scholar] [CrossRef] - Pourmottaghi, A.; Gazor, S. A CFAR detector in a nonhomogenous Weibull clutter. IEEE Trans. Aerosp. Electron. Syst.
**2012**, 48, 1747–1758. [Google Scholar] [CrossRef] - Hou, B.; Chen, X.; Jiao, L. Multilayer CFAR detection of ship targets in very high resolution SAR images. IEEE Geosci. Remote Sens. Lett.
**2015**, 12, 811–815. [Google Scholar] - Leng, X.; Ji, K.; Yang, K.; Zou, H.X. A bilateral CFAR algorithm for ship detection in SAR images. IEEE Geosci. Remote Sens. Lett.
**2015**, 12, 1536–1540. [Google Scholar] [CrossRef] - Wang, X.; Chen, C. Adaptive ship detection in SAR images using variance WIE-based method. Signal, Image Video Process
**2016**, 10, 1219–1224. [Google Scholar] [CrossRef] - Wang, X.; Chen, C. Ship Detection for Complex Background SAR Images Based on a Multiscale Variance Weighted Image Entropy Method. IEEE Geosci. Remote Sens. Lett.
**2017**, 14, 184–187. [Google Scholar] [CrossRef] - Geng, X.; Shi, L.; Yang, J.; Li, P.; Zhao, L.; Sun, W.; Zhao, J. Ship Detection and Feature Visualization Analysis Based on Lightweight CNN in VH and VV Polarization Images. Remote Sens.
**2021**, 13, 1184. [Google Scholar] [CrossRef] - You, J.; Hu, Z.; Peng, C.; Wang, Z. Generation and Annotation of Simulation-Real Ship Images for Convolutional Neural Networks Training and Testing. Appl. Sci.
**2021**, 11, 5931. [Google Scholar] [CrossRef] - Zhao, Y.W.; Zhou, P.; Zhang, X.; Zhang, M. Application of improved equivalent edge currents in synthetic aperture radar imaging. J. Syst. Eng. Electron.
**2010**, 21, 556–571. [Google Scholar] [CrossRef] - Chen, H.; Zhang, M.; Zhao, Y.W.; Luo, W. An Efficient Slope-deterministic Facet Model for SAR Imagery Simulation of Marine Scene. IEEE Trans. Antennas Propag.
**2010**, 58, 3751–3756. [Google Scholar] [CrossRef] - Ghavidel, A.; Camps, A. Time-domain Statistics of the Electromagnetic Bias in GNSS-Reflectometry. Remote Sens.
**2013**, 7, 11151–11162. [Google Scholar] [CrossRef] [Green Version] - Tao, Y.B.; Lin, H.; Bao, H.J. Kd-tree Based Fast Ray Tracing for RCS Prediction. Prog. Electromagn. Res.
**2008**, 81, 329–341. [Google Scholar] [CrossRef] [Green Version] - Rius, J.M.; Ferrando, M.; Jofre, L. GRECO: Graphical Electromagnetic Computing for RCS Prediction in Real Time. IEEE Antennas Propag. Mag.
**1993**, 35, 7–17. [Google Scholar] [CrossRef] [Green Version] - Wei, P.B.; Zhang, M.; Niu, W.; Jiang, W.Q. GPU-Based Combination of GO and PO for Electromagnetic Scattering of Satellite. IEEE Trans. Antennas Propag.
**2012**, 60, 5278–5285. [Google Scholar] [CrossRef] - Jiang, W.Q.; Zhang, M.; Zhao, Y.; Nie, D.; Jiao, Y.C. Rectangular Wave Beam Based GO/PO Method for RCS Simulation of Complex Target. Prog. Electromagn. Res. M
**2017**, 53, 53–65. [Google Scholar] [CrossRef] [Green Version] - Jiang, W.Q.; Zhang, M.; Nie, D.; Jiao, Y.C. Improved GO/PO method and its application to wideband SAR image of conducting objects over rough surface. Waves Random Complex Media
**2018**, 28, 310–325. [Google Scholar] [CrossRef] - Neo, Y.L.; Wong, F.H.; Cumming, I.G. Processing of Azimuth-Invariant Bistatic SAR Data Using the Range Doppler Algorithm. IEEE Trans. Geosci. Remote Sens.
**2008**, 46, 14–21. [Google Scholar] [CrossRef] [Green Version] - Li, Z.; Wang, J.; Liu, Q.H. Frequency-domain backprojection algorithm for synthetic aperture radar imaging. IEEE Geosci. Remote Sens. Lett.
**2015**, 12, 905–909. [Google Scholar] - Tong, X.; Bao, M.; Sun, G.; Han, L.; Zhang, Y.; Xing, M. Refocusing of Moving Ships in Squint SAR Images Based on Spectrum Orthogonalization. Remote Sens.
**2021**, 13, 2807. [Google Scholar] [CrossRef] - Elfouhaily, T.; Chapron, B.; Katarsos, K. A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res.
**1997**, 102, 15781–15796. [Google Scholar] [CrossRef] - Longuet-Higgins, M.S.; Cartwright, D.E.; Smith, N.D. Observations of the directional spectrum of sea waves using the motions of a floating buoy. In Ocean Wave Spectra; Prentice-Hall: Hoboken, NJ, USA, 1963; pp. 111–132. [Google Scholar] [CrossRef]

**Figure 3.**SAR images of the cubes: (

**a**) ${\rho}_{a}$ = 4 m, B = 0.0375 GHz; (

**b**) ${\rho}_{a}$ = 2 m, B = 0.075 GHz; (

**c**) ${\rho}_{a}$ = 1 m, B = 0.15 GHz; (

**d**) ${\rho}_{a}$ = 0.5 m, B = 0.3 GHz.

**Figure 6.**Model of a ship on a dynamic sea surface with different orientations: (

**a**) perpendicular to the moving direction of the airborne radar; (

**b**) parallel to the moving direction of the airborne radar.

**Figure 7.**SAR images of the ship on a static sea surface: (

**a**) single scattering; (

**b**) multiple scattering.

**Figure 8.**SAR images of a ship on a dynamic sea surface (0.62 s): (

**a**) single scattering; (

**b**) multiple scattering.

**Figure 9.**SAR images of a ship on a dynamic sea surface (1.86 s): (

**a**) single scattering; (

**b**) multiple scattering.

**Figure 10.**SAR images with different sizes of the pixel matrices: (

**a**) single scattering (128×128); (

**b**) multiple scattering (128×128); (

**c**) multiple scattering (256×256); (

**d**) multiple scattering (512×512).

Pixel Matrix Size | Time Needed with Proposed Method (s) |
---|---|

128×128 | 16.364 |

256 × 256 | 65.224 |

512×512 | 260.925 |

^{TM}i7-6700K CPU and NVIDIA GeForce GTX 1080 display card.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jiang, W.-Q.; Wang, L.-Y.; Li, X.-Z.; Liu, G.; Zhang, M.
Simulation of a Wideband Radar Echo of a Target on a Dynamic Sea Surface. *Remote Sens.* **2021**, *13*, 3186.
https://doi.org/10.3390/rs13163186

**AMA Style**

Jiang W-Q, Wang L-Y, Li X-Z, Liu G, Zhang M.
Simulation of a Wideband Radar Echo of a Target on a Dynamic Sea Surface. *Remote Sensing*. 2021; 13(16):3186.
https://doi.org/10.3390/rs13163186

**Chicago/Turabian Style**

Jiang, Wang-Qiang, Liu-Ying Wang, Xin-Zhuo Li, Gu Liu, and Min Zhang.
2021. "Simulation of a Wideband Radar Echo of a Target on a Dynamic Sea Surface" *Remote Sensing* 13, no. 16: 3186.
https://doi.org/10.3390/rs13163186