30+
Jahre Hochleistungssoftware für Wissenschaft und Ingenieurwesen
Anmeldung
Watch Videos
Kostenlos testen
Kaufen
English
日本語
Deutsch
Toggle navigation
Produkte
PRODUKTE
Origin
OriginPro
Origin-Viewer
Alle Produkte
Origin vs. OriginPro
Neuerungen in der aktuellen Version
Produktliteratur
DEMONSTRATIONEN
Anwendungen
Anwenderberichte
Grafikgalerie
Animationsgalerie
3D-Funktionsgalerie
FUNKTIONEN
Grafische Darstellung in 2D und 3D
Peakanalyse
Kurvenanpassung
Statistik
Signalverarbeitung
Schlüsselfunktionen nach Version
LIZENZIERUNGSOPTIONEN
Node-Locked (rechnergebunden)
FLEXnet Concurrent (Netzwerk)
Dongle
Akademiker
Studentenversion
Anwender in der Industrie
Anwender in Behörden
Warum OriginLab?
Wer verwendet Origin?
Anwendermeinungen
Veröffentlichte Produktbewertungen
Online-Shop
Angebot anfragen/Bestellen
Vertriebspartner suchen
Apps
Data Import
CSV Connector
Excel Connector
MATLAB Connector
XML Connector
LeCroy Connector
Agilent MS
Tektronix WFM
Google Map
N42 Connector
More...
Graphing
Graph Maker
Paired Comparison Plot
Manhattan Plot
Forest Plot
Piper Diagram
Voronoi Diagram
Chromaticity Diagram
Heatmap with Dendrogram
More...
Publishing
Graph Publisher
Send Graphs to PowerPoint
Send Graphs to Word
Send Graphs to OneNote
Movie Creator
Graph Anim
More...
Curve Fitting
Simple Fit
Speedy Fit
Rank Models
Fit ODE
Neural Network Fitting
Fit Convolution
Polynomial Surface fit
Enzyme Kinetics
Drug Dissolution Analysis
More...
Peak Analysis
Simple Spectroscopy
Peak Deconvolution
Pulse Integration
Align Peaks
Global Peak Fit
PCA for Spectroscopy
2D Peak Analysis
Gel Molecular Weight Analyzer
More...
Statistics
Stats Advisor
PCA
DOE
Chi-Square Test
Weibull Fit
Structural Equation Modeling
Surface Roughness Parameters
More...
How do Apps work in Origin?
Suggest a New App
Kaufen
Neuaufträge
Softwarepflege verlängern
Upgrade für Origin
Vertrieb kontaktieren (nur USA & Kanada)
Vertriebspartner suchen
Lizenzierungsoptionen
Node-Locked (rechnergebunden)
FLEXnet Concurrent (Netzwerk)
Dongle
Akademiker
Studentenversion
Anwender in der Industrie
Anwender in Behörden
Warum OriginLab?
FAQ für Vertrieb
Support
SERVICE
Origin auf neuen PC übertragen
Origin lizenzieren/registrieren
Beratung
Schulung
SUPPORT
FAQ für Support
Hilfecenter
Support kontaktieren
Support-Richtlinien
DOWNLOADS
Service Releases
Origin Viewer
Orglab Module
Produktliteratur
Demoversion von Origin
Alle Downloads
VIDEOS
Installation und Lizenzierung
Einführung in Origin
Alle Video-Tutorials
DOKUMENTATION
Hilfe
Tutorials
Programmierung mit Python
Programmierung mit OriginC
Programmierung mit LabTalk
Gesamte Dokumentation
Communities
Anwenderforum
Anwenderdateiaustausch
Facebook
YouTube
LinkedIn
Über uns
OriginLab Corp.
Neuigkeiten & Events
Karriere
Vertriebspartner
Kontakt
Anmeldung
All Books
Non-Programming Books
User Guide
Tutorials
Quick Help
Origin Help
Programming Books
X-Function
Origin C
LabTalk Programming
Python
Python (External)
Automation Server
LabVIEW VI
Apps
App Development
Code Builder
License
MOCA
Orglab
2.12 White Noise
White-Noise
Contents
1
Summary
2
Tutorial
Summary
The App
Speedy Fit
is used to generate Gaussian white noise for signal data.
Tutorial
Start this tutorial with the app
White Noise
installed. If you have not installed this app, please click
Add Apps
button in
Apps Gallery
to open
App Center
to search and install the app.
Select
Data: Connect to File > Text/CSV
menu to import the sample data
fftfilter1.DAT
under the folder
<Origin Program Folder>\Samples\Signal Processing
into a new worksheet. Select col(B) to plot a line graph.
We are going to add some white noise to this curve. Click the app icon to open the app dialog.
Set
Signal-to-Noise(db)
to
30
and
Speed
to
60
.
Click OK button. A result column will be added into the source worksheet. Select this column and then drag-and-drop it into the graph window.This column will be plotted as a red line. You can see some noise has been added to the source signal data.
Skip Navigation Links
All Books
Apps
Datenanalyse
User Guide
Tutorials
Quick Help
Origin Help
X-Function
Origin C
LabTalk Programming
Python
Python (External)
Automation Server
LabVIEW VI
Apps
App Development
Code Builder
License
MOCA
Orglab
Programmieren
Graphing
Datenanalyse
Data Handling
Import and Export
Miscellaneous
Data Connector
Tolerance Intervals(Pro)
Time Series Analysis (Pro)
Tutorial for Attribute Agreement Analysis
ODE Solver
Level Crossing
Compare Linear Fit Parameters/Datasets
Simple Fit
Constrained Multiple Regression (Pro)
Time-Frequency Analysis
Fourier Self-Deconvolution (Pro)
Sequential Fit (Pro)
White Noise
Piecewise Fit (Pro)
Principal Component Analysis for Spectroscopy(Pro)
Principal Component Analysis
Logistic Regression
Simple Time Series Analysis (Pro)
General Linear Regression (Pro)
Slope Analyzer (Pro)
Weibull Fit with Least Squares Method
Gage Study (Pro)
3D Convex Hull
Overlap Area
Redundancy Analysis (Pro)
Cyclic Voltammetry (Pro)
Global Peak Fit (Pro)
Spectral Broadening
3D Smoother
Factor Analysis (Pro)
Mask or Change Data in Contour
Peak Deconvolution
Stats Advisor
Bubble Image Area (Pro)
Design of Experiments (Pro)
Correlation Shift
Gaussian Mixture Models (Pro)
Align Peaks
Global Fit with Multiple Functions (Pro)
Fitting Function Library
Change Point Analysis
2D Correlation Spectroscopy Analysis (Pro)
Speedy Fit(Pro)
Gel Molecular Weight Analyzer
Neural Network Fitting(Pro)
2D Peak Analysis(Pro)
Canonical Correlation Analysis
Fit Adsorption Isotherm
Linear Mixed Effects Model(Pro)
ANOVA from Summary Data
SVM Classification
Standard Curve Analysis(Pro)
Nonmetric Multidimensional Scaling
Neural Network Regression (Pro)
Rank Models by Fit Reports
Apparent Integration(Pro)
MANOVA
Optimal Cluster Number (Pro)
Empirical Mode Decomposition (Pro)
Redlich-Kister Polynomial Fit
Tangential Baseline (Pro)
NetCDF Data Analysis(Pro)
Structural Equation Modeling(Pro)
Advanced Time Series Analysis (Pro)
Calcium Transient Analysis
Effect Size for ANOVA(Pro)
Bootstrap Sampling(Pro)
Statistical Process Control (Pro)
Sparse Principal Components Analysis(Pro)
English
|
Deutsch
|
日本語
© OriginLab Corporation. Alle Rechte vorbehalten.
×
☐
_
Let's Chat