28.1.70 Gauss

Function

y=y_0+\frac A{w\sqrt{\pi /2}}e^{-2\frac{(x-x_c)^2}{w^2}}

Brief Description

Area version of Gaussian Function.

Sample Curve

CFF Image208.png

Parameters

Number: 4

Names: y0, xc, w, A

Meanings: y0 = offset, xc = center, w = width, A = area

Lower Bounds: w > 0.0

Upper Bounds: none

Derived Parameters

Refer to the curve in Sample Curve section:

\sigma: sigma = w / 2

Full Width at Half Maximum: FWHM = sqrt(2 * ln(2)) * w

Height of the Curve (yc - y0): Height = A / (w * sqrt(PI / 2))

Script Access

nlf_gauss(x,y0,xc,w,A)

Function File

FITFUNC\GAUSS.FDF

Category

Origin Basic Functions, Peak Functions, Chromatography, Electrophysiology, Statistics